Законы г менделя сцепленного наследования

Законы Менделя

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой — женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.

Генетика крови.По системе АВО у человека 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена I А , I в , I°. Два первых кодоминантны по отношению друг к другу и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии – 4.

Г. Мендель провел дигибридное скрещивание растений гороха с желтыми и гладкими семенами и растений гороха с зелеными и морщинистыми семенами (и те, и другие чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании (расщепляется).

При сочетании XY большинство генов, находящихся в Х-хромосоме, не имеют аллельной пары в Y-хромосоме. Так же гены, расположенные в Y-хромосоме, не имеют аллелей в Х-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свертываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом (нуклеопротеидных структур в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи) гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных;цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Третий закон Менделя – закон независимого наследования контролируемых неаллельными генами признаков.Анализ расщепления при дигибридном скрещивании с помощью решетки Пеннета показывает, что каждый из признаков наследуется независимо от другого, т.к. расщепление по фенотипу для каждого из них – 3:1, как при моногибридном скрещивании.

Основные понятия
Ген и аллели. Единицей наследственной информации является ген.
Ген (с точки зрения генетики) — участок хромосомы, определяющий развитие у организма одного или нескольких признаков.
Аллели — различные состояния одного и того же гена, располагающиеся в определённом локусе (участке) гомологичных хромосом и определяющие развитие одного какого-то признака. Гомологичные хромосомы имеются только в клетках, содержащих диплоидный набор хромосом. Их нет в половых клетках (гаметах) эукариот и у прокариот.

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х — или Y -хромосомах, называют наследованием, сцепленным с полом.

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, — аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, — половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека — Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина — Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол — гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому — мужской.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.
Еще почитать --->  Проездной На Электричку 2023 Московская Область Стоимость

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Закон Моргана – сцепленное наследование

Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a). Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

Например, ген A сцеплен с геном B ( AB ), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов ( ab ). Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB . Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах). Если при независимом распределении всех типов гамет ( AB , ab , Ab , aB ) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше. Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение. Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме. Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.
Закономерности сцепленного наследования генов были изучены Т. Морганом и его учениками в начале 20-х гг. XX в. Объектом их исследований являлась плодовая мушка дрозофила (срок её жизни невелик, и за год можно получить несколько десятков поколений, её кариотип составляют всего четыре пары хромосом).
Закон Моргана: гены, локализованные в одной хромосоме, наследуются преимущественно вместе.
Сцепленные гены — гены, лежащие в одной хромосоме.
Группа сцепления — все гены одной хромосомы.
В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления — кроссинговер (перекрёст хромосом) — обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт — определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генотип — это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).
Взаимодействовать могут как аллельные гены, так и неаллельные.
Взаимодействие аллельных генов: полное доминирование, неполное доминирование, кодоминирование.
Полное доминирование — явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
Неполное доминирование — явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
Кодоминирование (независимое проявление) — явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и B, являются кодоминантными по отношению друг к другу, и оба доминантны по отношению к гену, определяющему группу крови 0.
Взаимодействие неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.
Кооперация — явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет своё собственное фенотипическое проявление, происходит формирование нового признака.
Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.
Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).
Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствует в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).
В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Расщепление — явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания — 9:3:3:1 или (3:1) 2 . При полигибридном — (3:1) n .
Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием. Примером неполного доминирования является наследование окраски цветков ночной красавицы.

Еще почитать --->  Можно Ли В 2023 Году Снять Деньги С Материнского Капитала 25000 Рублей

По системе АВ0 у людей 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена IА, IВ, I0. Два первых кодоминантны по отношению друг к другу, и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии — 4.

Признак (фен) — некоторое качество или свойство, по которому можно отличить один организм от другого.
Доминирование — явление преобладания у гибрида признака одного из родителей.
Доминантный признак — признак, проявляющийся в первом поколении гибридов.
Рецессивный признак — признак, внешне исчезающий в первом поколении гибридов.

Закономерности наследования, установленные Г

Приблизительно полученное соотношение равно 1:3 или 3:1. Обнаруженную закономерность назвали законом расщепления (второй закон Менделя). Его трактовка такова: Скрещивание гетерозиготных гибридов, полученных в первом поколении, приводит к преобладанию во втором поколении признаков по соотношению 1:2:1 (генотип) и 3:1(фенотип).

Здесь четко прослеживается проявление первого закона Г. Менделя (единообразие гибридов первого поколения). Скрещивают два растения гороха, отличающихся окраской семян. А – желтые (доминантный признак), а – зеленые (рецессивный признак). Все гибриды первого поколения проявляют доминантный признак — желтые семена. При этом не берется во внимание, какое из растений давало пыльцу, а какое являлось «ее приемником». Аналогичные результаты получались, когда скрещивали другие растения, различающиеся также на один признак.

Становится виден механизм расщепления гомозиготных особей по доминантному гену. Полученные результаты привели Г. Менделя к выводу, что не происходит смешивания наследственных факторов при образовании гибридов, но сохраняется их неизменный вид. Так как возникновению между поколениями связей помогают гаметы, то вероятнее всего, что при их образовании происходит попадание только одного фактора из пары. Оплодотворение же способствует восстановлению пары. Такое предположение назвали правилом чистоты гамет.

Горизонтальная часть такой таблицы отражает мужские гаметы, а женские записаны в вертикальном столбце. Таким образом, образуется 4 вида гамет: АВ, Аb, аВ и аb. При этом количество зигот, которые могут возникнуть при случайном слиянии этих гамет, равно 4*4=16. Именно столько клеток и отражает решетка Пеннета.

Дигибридное скрещивание имеет и цитологические основы. Так, в профазу I мейоза гомологичным хромосомам свойственна конъюгация и расхождение в анафазе. Расхождение хромосом происходит от средней части клетки (экватор), причем к каждому полюсу отходит по одной хромосоме. В результате такого расхождения происходит независимое комбинирование негомологичных хромосом в свободном и независимом порядке. Оплодотворение приводит к восстановлению в зиготе диплоидного хромосомного набора, в результате чего гомологичные хромосомы, оказавшиеся в процессе мейоза в разных половых клетках родителей, соединяются вновь.

Кинологический клуб; Верность

Закон независимого наследования (третий закон): при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ним разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

  • любой признак формируется под влиянием материального фактора (гена).
  • Фактор, определяющий доминантный признак, он определил заглавной буквой А, а рецессивный — а. Каждая особь содержит два фактора, определяющих развитие признака, один она получает от матери, другой — от отца.
  • При образовании гамет у животных и спор — у растений происходит редукция факторов и в каждую гамету или спору попадает только один.
  • буквой Р (от лат. «парента» — родители) обозначают родительские организмы, взятые для скрещивания;
  • знаком ♀ («зеркало Венеры») — обозначают женский пол;
  • ♂ («щит и копье Марса») — обозначают мужской иол.
  • Скрещивание обозначают знаком «X» , гибридное потомство обозначают буквой F (от лат. «филия» — дети) с цифрой, отвечающей порядковому номеру поколения — F1, F2, F3.

В каждой хромосоме сосредоточено несколько тысяч генов, по которым одна особь данного вида отличается от другой. Выясняя вопрос, как будут наследоваться признаки этих генов, Морган установил, что гены, расположенные в одной хромосоме, наследуются сцеплено, вместе, как одна альтернативная пара, не обнаруживая независимого наследования.

Сцепленное наследование — понятие, виды и значение

Хромосомная теория передачи наследственной информации основана на том, что все передающиеся от родителей признаки закодированы в генах хромосом – структурных единицах наследственности. В каждом заложена информация об определенном признаке: последовательности полипептида, синтезе белков, ферментов и других веществ в клетке.

В обычных клетках хромосомы имеют пару, соответствующие участки которой отвечают за наследование одних и тех же признаков. При образовании гамет (половых клеток) в процессе полового размножения гены копируются в случайном порядке, образуя гаплоидный (непарный) хромосомный набор.

У некоторых насекомых передача пола определяется не так, как у людей. Например, пчелы. У матки и рабочих особей полный (диплоидный) набор, а у пчелиного трутня – гаплоидный. Сцепленная с полом наследственность появляется тогда, когда некоторые признаки содержат только Х и Y хромосомы.

Когда хромосомы одной пары сближаются на первой профазе полового деления, они начинают обмениваться генами друг с другом. Это явление называется – кроссинго́вер, а хромосомы, обменявшиеся генами – кроссоверными. Если возможен кроссинговер – то сцепление неполное.

Во втором скрещивании участвовали самки с доминантными генами и самцы с рецессивными. В результате должно было появиться четыре комбинации характеристик в пропорции 1:1:1:1. Однако количество мушек с серым панцирем и обычными крыльями и темных с зачаточными крыльями было одинаковым и составляло 41,5% каждое.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

В то время единственным способом понять генетику человека было узнать, передались ли морфологические или патологические признаки согласно законам Менделя. Фактически, можно анализировать через деревья генеалогии, как ведут себя персонажи и являются ли они родственниками или нет, то есть подчиняются ли законам Менделя. Это такой подход
что позволил выделить среди патологий те, которые можно отнести к наследственным заболеваниям, различая доминантные и рецессивные заболевания, аутосомные или связанные с полом.

В начале 20 века генетика как в царстве растений, так и в царстве животных быстро извлекла пользу из результатов многочисленных экспериментов. Однако тут не было
случаев для генетики человека, где эксперименты невозможны, что мы можем легко понять, особенно когда мы знаем, что Мендель скрестил людей первого поколения, то есть братьев и сестер, что противоречит хорошим манерам и что сегодня можно было бы назвать «неуместными отношениями».

Принято говорить, что законы Менделя канули в Лету на сорок лет. На самом деле их не игнорировали, но и игнорировали. Окончательно эти законы были допущены в науку биологию только тогда, когда они были подтверждены изложением теории хромосомной наследственности, которая распознала хромосому как опору наследственных характеристик.

Его также называют первым наследственным законом Менделя. По закону доминирования гибридные потомки наследуют только доминантный признак фенотипа. Подавленные аллели называются рецессивными, в то время как аллели, определяющие признак, называются доминантными.

ЛЕКЦИЯ № 13

Георг Мендель скрещивал растения гороха, отличающиеся по окраске семян (желтые и зеленые) и по характеру поверхности семян (гладкие и морщинистые). Скрещивая чистые линии гороха с желтыми гладкими семенами с чистыми линиями, имеющими зеленые морщинистые семена, он получил гибриды первого поколения с желтыми гладкими семенами (доминантные признаки). Затем Мендель скрестил гибриды первого поколения между собой и получил четыре фенотипических класса в соотношении 9: 3: 3: 1, т. е. в результате во втором поколении появилось два новых сочетания признаков: желтые морщинистые и зеленые гладкие. Для каждой пары признаков отмечалось отношение 3: 1, характерное для моногибридного скрещивания: во втором поколении получилось 3/4 гладких и 1/4 морщинистых семян и 3/4 желтых и 1/4 зеленых семян. Следовательно, две пары признаков объединяются у гибридов первого поколения, а затем разделяются и становятся независимыми друг от друга.

Еще почитать --->  Сбербанк Как Снизить Процентную Ставку По Существующей Ипотеке Многодетным

При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов первого поколения проявляется только доминантный аллель, однако рецессивный аллель не теряется и не смешивается с доминантным. Среди гибридов второго поколения и рецессивный, и доминантный аллель может проявиться в своем – чистом – виде, т. е. в гомозиготном состоянии. В итоге гаметы, образуемые такой гетерозиготой, являются чистыми, т. е. гамета А не содержит ничего от аллели а, гамета а – чиста от А.

Отмечается в случаях, когда фенотип гетерозигот СС1 отличается от фенотипа гомозигот СС и С1С1 промежуточной степенью проявления признака, т. е. аллель, отвечающий за формирование нормального признака, находясь в двойной дозе у гомозиготы СС, проявляется сильнее, чем в одинарной дозе у гетерозиготы СС1. Возможные при этом генотипы различаются экспрессивностью, т. е. степенью выраженности признака.

Наследуемые признаки могут быть качественными (моногенными) и количественными (полигенными). Качественные признаки представлены в популяции, как правило, небольшим числом взаимоисключающих вариантов. Например, желтый или зеленый цвет семян гороха, серый или черный цвет тела у мух дрозофил, светлый или темный цвет глаз у человека, нормальная свертываемость крови или гемофилия. Качественные признаки наследуются по законам Менделя (менделирующие признаки).

Закон о независимом наследовании: расщепление по каждой паре признаков идет независимо от других пар признаков. В чистом виде этот закон справедлив только для генов, локализованных в разных хромосомах, и частично соблюдается для генов, расположенных в одной хромосоме, но на значительном расстоянии друг от друга.

МЕ́НДЕЛЯ ЗАКО́НЫ, ос­нов­ные за­ко­но­мер­но­сти рас­пре­де­ле­ния на­след­ст­вен­но де­тер­ми­ни­ро­ван­ных при­зна­ков в ря­ду по­сле­до­ва­тель­ных по­ко­ле­ний, ус­та­нов­лен­ные Г. Мен­де­лем . Экс­пе­рим. ос­но­вой для фор­му­ли­ров­ки М. з. по­слу­жи­ли мно­го­лет­ние (1856–63) опы­ты по скре­щи­ва­нию не­сколь­ких сор­тов го­ро­ха по­сев­но­го (са­мо­опы­ляю­ще­го­ся рас­те­ния) с це­лью ус­та­нов­ле­ния, как пи­сал сам ав­тор, «все­об­ще­го за­ко­на об­ра­зо­ва­ния и раз­ви­тия гиб­ри­дов». Важ­ную роль в раз­ра­бот­ке изу­чае­мой Менделем про­бле­мы сыг­ра­ли: вы­бор объ­ек­та, пре­иму­ще­ст­во ко­то­ро­го для по­доб­ных опы­тов за­клю­ча­лось в мно­го­чис­лен­но­сти сор­тов (раз­но­вид­но­стей) го­ро­ха, по­сто­ян­ст­ве их от­ли­чит. при­зна­ков, пред­став­лен­ных ка­че­ст­вен­ны­ми (аль­тер­на­тив­ны­ми) фор­ма­ми, и од­но­го­дич­но­сти жиз­нен­но­го цик­ла; ис­поль­зо­ва­ние стро­гих ме­то­дов под­бо­ра ис­ход­но­го ма­те­риа­ла, спец. схем скре­щи­ва­ний; при­ме­не­ние ко­ли­че­ст­вен­но­го учё­та и ма­те­ма­тич. ана­ли­за по­лу­чен­ных ре­зуль­та­тов. М. з. вклю­ча­ют за­кон еди­но­об­ра­зия гиб­ри­дов пер­во­го по­ко­ле­ния, за­кон рас­ще­п­ле­ния и за­кон не­за­ви­си­мо­го ком­би­ни­ро­ва­ния при­зна­ков.

Нарушается закон единообразия первого поколения. Наблюдается крисс-кросс наследование, т.е. дочери наследуют признак отцов, а сыновья – матерей. Явление крисс-кросс наследования это нарушение первого законы Менделя, которое возможно благодаря тому, что признак локализован в Х-хромосоме.

Подтверждается закон расщепления. Однако Морган обратил внимание на то, что белоглазыми в данном скрещивании были только самцы, следовательно, Морган делает вывод, что ген, определяющий цвет глаз, локализован в Х-хромосоме, а в Y -хромосоме его нет. Морган проводит рецепрокное скрещивание.

3). Голандрическое наследование, при котором аллели локализованы в Y -хромосоме. В Y -хромосоме находится не много генов, но как правило они определяют развитие первичных и вторичных мужских половых признаков. Голандрическое наследование лежит в основе полового деморфизма. В Y -хромосоме локализованы следующее гены:

После восьми недель беременности начинаются различия, если плод генотипом XX , то под действием гормонов матери первичные гонады преобразуются в яичники, которые как железа внутренней секреции начинают работать только после периода полового созревания, следовательно, развитие женского эмбриона определяется только гормонами матери. Под их влиянием дегенерируют вольфовы протоки, а мюллеровы превращаются в яйцеводы или в фаллопиевы трубы. Из мочеполового синуса развивается шейка матки, матка и верхняя часть влагалища. Из мочеполового бугорка развивается нижняя часть влагалища и наружные гениталии. Гормоны матери действуют на гипоталамус зародыша и детерминируют поведение по женскому половому типу после полового созревания.

Аллель, который контролирует признак, всегда проявляющийся у потомства, называется доминантным и, следовательно, такой признак тоже будет являться доминантным. Аллель, который контролирует признак, необязательно проявляющийся у потомства, называется рецессивным

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Кинологический клуб; Верность

Закон независимого наследования (третий закон): при дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ним разные сочетания. Образуются четыре фенотипические группы, характеризующиеся отношением 9:3:3:1.

  • любой признак формируется под влиянием материального фактора (гена).
  • Фактор, определяющий доминантный признак, он определил заглавной буквой А, а рецессивный — а. Каждая особь содержит два фактора, определяющих развитие признака, один она получает от матери, другой — от отца.
  • При образовании гамет у животных и спор — у растений происходит редукция факторов и в каждую гамету или спору попадает только один.
  • буквой Р (от лат. «парента» — родители) обозначают родительские организмы, взятые для скрещивания;
  • знаком ♀ («зеркало Венеры») — обозначают женский пол;
  • ♂ («щит и копье Марса») — обозначают мужской иол.
  • Скрещивание обозначают знаком «X» , гибридное потомство обозначают буквой F (от лат. «филия» — дети) с цифрой, отвечающей порядковому номеру поколения — F1, F2, F3.

В каждой хромосоме сосредоточено несколько тысяч генов, по которым одна особь данного вида отличается от другой. Выясняя вопрос, как будут наследоваться признаки этих генов, Морган установил, что гены, расположенные в одной хромосоме, наследуются сцеплено, вместе, как одна альтернативная пара, не обнаруживая независимого наследования.

Adblock
detector