Законы наследования признаков при моно ди и полигибридного скрещивания

Это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М (М1М11), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель М1 вызывает синтез измененного пептида М1, а мутантный аллель М11 определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененных участков при формировании четвертичной структуры в редких случаях может привести к появлению белка с нормальными свойствами.

Закон о независимом наследовании: расщепление по каждой паре признаков идет независимо от других пар признаков. В чистом виде этот закон справедлив только для генов, локализованных в разных хромосомах, и частично соблюдается для генов, расположенных в одной хромосоме, но на значительном расстоянии друг от друга.

Количественные признаки представлены в популяции множеством альтернативных вариантов. К количественным относятся такие признаки, как рост, пигментация кожи, умственные способности у человека, яйценоскость у кур, содержание сахара в корнеплодах сахарной свеклы и т. д. Наследование полигенных признаков в целом не подчиняется законам Менделя.

Георг Мендель скрещивал растения гороха, отличающиеся по окраске семян (желтые и зеленые) и по характеру поверхности семян (гладкие и морщинистые). Скрещивая чистые линии гороха с желтыми гладкими семенами с чистыми линиями, имеющими зеленые морщинистые семена, он получил гибриды первого поколения с желтыми гладкими семенами (доминантные признаки). Затем Мендель скрестил гибриды первого поколения между собой и получил четыре фенотипических класса в соотношении 9: 3: 3: 1, т. е. в результате во втором поколении появилось два новых сочетания признаков: желтые морщинистые и зеленые гладкие. Для каждой пары признаков отмечалось отношение 3: 1, характерное для моногибридного скрещивания: во втором поколении получилось 3/4 гладких и 1/4 морщинистых семян и 3/4 желтых и 1/4 зеленых семян. Следовательно, две пары признаков объединяются у гибридов первого поколения, а затем разделяются и становятся независимыми друг от друга.

При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов первого поколения проявляется только доминантный аллель, однако рецессивный аллель не теряется и не смешивается с доминантным. Среди гибридов второго поколения и рецессивный, и доминантный аллель может проявиться в своем – чистом – виде, т. е. в гомозиготном состоянии. В итоге гаметы, образуемые такой гетерозиготой, являются чистыми, т. е. гамета А не содержит ничего от аллели а, гамета а – чиста от А.

Скрещивание, при котором родительские формы различаются по двум парам альтернативных признаков, носит название дигибридного. Классический пример анализа дигибридного скрещивания дал Г. Мендель, скрестивший две формы гороха, различающиеся одновременно по форме и окраске семян:

третий закон (независимого наследования признаков или независимого комбинирования генов): При скрещивании особей, отличающихся двумя (или более) парами альтернативных признаков в потомстве наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Признаки, которые наследуются по законам Менделя, называются менделирующими. Например, у человека к таким признакам относятся: цвет и форма глаз, острота зрения, наличие абсолютного слуха. Все менделирующие признаки дискретны и контролируются моногенно, т.е. одним геном.

Для полигибридного скрещивания, в котором родительские особи различаются многими парами альтернативных признаков, характерны все закономерности, установленные Г. Менделем. При этом количество типов гамет можно рассчитать по формуле2 n , где n — число аллельных пар. Количество фенотипических классов определяют по формуле (3+1) n , количество генотипических классов — 3 n .

Закономерности наследования, установленные Г

В этот раз Морган использовал дигетерозиготную самку и гомозиготного рецессивного самца. Так были получены 4 фенотипа, однако их соотношение не соответствовало тому, которое наблюдалось у Менделя при независимом комбинировании признаков. Число сн и чк составило 83% от всего потомства, а число ск и чн — всего 17%.

Бомбейский феномен проявляется в наследовании групп крови по системе АВО. Женщина с 1 группой крови (IoIo), которая вышла замуж за мужчину со 2 группой (IaIo), родила двух девочек с 4 (IaIb) и 1 (IoIo) группами. Это объясняется тем, что их мать обладала аллелем Ib, но его действие подавлялось редким рецессивным геном, который в гомозиготном состоянии оказал свое эпистатическое действие. В результате у женщины фенотипически проявлялась 1 группа.

2) Анализирующее скрещивание проводилось с целью выведения генотипа гибридов 1 ого поколения. Дигетерозиготный самец был скрещен с рецессивной дигомозиготной самкой. Согласно 3 ему закону Менделя, можно было ожидать появление 4 фенотипов из-за независимой комбинации признаков: сн (BbVv), чк (bbvv), cк (Bbvv), чн (bbVv) в соотношении 1:1:1:1. Однако были получены лишь 2 комбинации: сн (BbVv) чк (bbvv).

При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки — таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями.

Цитологические основы 2 ого закона Менделя раскрываются в гипотезе «чистоты гамет». Из схем скрещивания видно, что каждый признак определяется сочетанием двух аллельных генов. При образовании гетерозиготных гибридов, аллельные гены не смешиваются, а остаются в неизменном виде. В результате мейоза в гаметогенезе, в каждую гамету попадает только 1 из пары гомологичных хромосом. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.

Моно -, ди- и полигибридное скрещивание

Моногибридное скрещивание – родители отличаются друг от друга по одной паре альтернативных признаков. При скрещивании гороха с пурпурными и белыми цветками в первом поколении все потомство имело пурпурные цветки (АА*аа = Аа и Аа) – закон единообразия первого поколения – 1 закон Менделя.

II. Аутосомно-рецессивный тип наследования.
По аутосомно-рецессивному типу наследуются следующие признаки:
1)волосы мягкие, прямые;
2)кожа тонкая;
3)группа крови Rh-;
4) фенилкетонурия – блокируется превращение фенилаланина в тирозин, который превращается в фенилпировиноградную кислоту, являющуюся нейротропным ядом
5)альбинизм.

Менделирующими признаками называются те, наследование которых происходит по закономерностям, установленным Г. Менделем. Менделирующие признаки определяются одним геном моногенно, то есть когда проявление признака определяется взаимодействием аллельных генов, один из которых доминирует (подавляет) другой. Менделевские законы справедливы для аутосомных генов с полной пенетрантностью и постоянной экспрессивностью (степенью выраженности признака).
Если гены локализованы в половых хромосомах (за исключением гомологичного участка в Х- и У-хромосомах), или в одной хромосоме сцеплено, или в ДНК органоидов, то результаты скрещивания не будут следовать законам Менделя.
Общие законы наследственности одинаковы для всех эукариот. У человека также имеются Менделирующие признаки, и для него характерны все типы их наследования: аутосомно-доминантный, аутосомно-рецессивный, сцепленный с половыми хромосомами (с гомологичным участком Х- и У-хромосом).

1) белый локон над лбом;
2) волосы жесткие, прямые (ежик);
3) шерстистые волосы — короткие, легко секущиеся, курчавые, пышные;
4) кожа толстая;
5) габсбургская губа — нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот;
6) полидактилия – многопалость, когда имеется от шести и более пальцев;
7) синдактилия — сращение мягких или костных тканей фаланг двух или более пальцев;
8) брахидактилия – недоразвитие дистальных фаланг пальцев;
9) арахнодактилия – сильно удлиненные «паучьи» пальцы.

Еще почитать --->  Регламент практического экзамена на категорию а 2023

Неполное доминирование – это наследование, при котором доминантный ген не полностью подавляет рецессивный, в этом случае гибриды первого поколения имеют промежуточный признак, то есть имеет место промежуточный характер наследования.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении. При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).

Дигибридным скрещиванием называется скрещивание двух организмов с учетом двух пар альтернативных признаков (скрещивание гороха с учетом цвета (желтый, зеленый) и поверхности семян (гладкая и морщинистая). Если в дигибридном скрещивании разные пары аллельных генов находятся в разных парах гомологичных хромосом, то пары признаков наследуются независимо друг от друга (закон независимого наследования признаков).

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Полигибридное скрещивание – скрещивание форм, отличающихся друг от друга, по нескольким парам альтернативных при знаков. При этом особь, гетерозиготная по n парам генов, может произвести 2n типов гамет, а в F2, при расщеплении потомства полигибридного скрещивания может образоваться 3n геноти пов. Частоту данного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов, можно вычислить следующим образом: надо подсчитать вероят ность соответствующего генотипа для каждой пары генов от дельно, а затем перемножить. Например, надо рассчитать часто ту генотипа AabbCc в потомстве от скрещивания АаВЬсст × ×АаВЬСс. Вероятность генотипа Аа в потомстве от скрещивания Аа × Аа равна 1/2; вероятность генотипа bb в потомстве от скре щивания ВЬ × ВЬ равна 1/4; вероятность генотипа Сс равна так же 1/2. Следовательно, вероятность генотипа AabbCc составляет 1/2*1/4*1/2 = 1/16.

При моногибридном скрещивании гетерозиготных организмов (гибридов первого поколения) в потомстве наблюдается расщепление по генотипу – 1 гомозиготный организм по доминантному гену (AA) к 2 гетерозиготным организма (Aa) и к 1 гомозиготному организму по рецессивному гену (aa) или 1:2:1, по фенотипу (при полном доминировании) – 3 организма с доминантным при- знаком к 1 организму с рецессивным признаком или 3:1.

Лекция Наследование признаков при моногибридном, дигибридном и полигибридном скрещивании

В некоторых случаях имеет место неполное доминирование : гибрид F1 характеризуется признаком промежуточным между родительскими. Таким примером является появление цветков львиного зева розовой окраски при скрещивании цветков красного и белого цвета. В данном случае различия окраски обусловлены парой аллельных генов, в которых отсутствует доминирование.

Прежде чем скрещивать растения между собой он убеждался, что они принадлежат чистым линиям. Для этого Г. Мендель в течение двух лет разводил различные сорта гороха, чтобы отобрать те линии, где признак всегда воспроизводился в потомстве из поколения в поколение (окраска семядолей, расположение цветков, длина растения и др.).

Соотношение четырех типов семян во втором поколении гибридов F2 было следующим: соответственно 315 круглых желтых, 108 круглых зеленых, 101 морщинистых желтых и 32 морщинистых зеленых. Этот результат хорошо совпадал с предполагаемым распределением 9:3:3:1, если основываться на гипотезе о независимой передаче признаков, поскольку отношение 3:1 хорошо соблюдается для каждого отдельно взятого признака.

Еще одним примером первичного плейотропного действия гена можно считать характерные симптомы такого наследственного синдрома, как синдром Барде-Бидла, проявляющийся сочетанием ожирения, шестипалости кистей и/или стоп, недоразвитием половых органов, умственной отсталостью и характерным поражением органа зрения у больных индивидов.

Так, при аддитивном действии фенотип будет более выражен при генотипе ААВВ, чем при АаВв. Например, пигментация кожи у человека варьирует от белой до черной. От браков между неграми и белыми рождаются дети с промежуточным цветом кожи, так называемые мулаты. В случае браков между мулатами потомки могут обладать любой окраской кожи — от черной до белой. Предполагается, что разница в пигментации кожи белых и чернокожих людей обусловлена действием трех или четырех неаллельных генов, каждый из которых в количественном отношении на окраску кожи влияет примерно одинаково.

Законы наследования признаков при моно ди и полигибридного скрещивания

Из гибридных семян гороха Мендель вырастил растения, которые подверг самоопылению, и образовавшиеся семена вновь высеял. В результате было получено второе поколение гибридов, или гибриды F2. Среди последних обнаружилось расщепление по каждой паре альтернативных признаков в соотношении примерно 3:1, т. е. три четверти растений имели доминантные признаки (пурпурные цветки, желтые семена, гладкие семена и т. д.) и одна четверть — рецессивные (белые цветки, зеленые семена, морщинистые семена и т. д.). Следовательно, рецессивный признаку гибрида F1 не исчез, а только был подавлен и вновь проявился во втором поколении. Это обобщение позднее было названо вторым законом Менделя, или законом расщепления.

В генетике присутствуют несколько типов передачи признаков и свойств от родителей к детям. Главным критерием здесь служит форма контроля признака, осуществляемая либо одним геном – моногенное наследование, или несколькими – полигенное наследование. Ранее мы рассмотрели законы независимого наследования признаков для моно- и дигибридного скрещивания, а именно первый, второй и третий закон Менделя. Сейчас мы рассмотрим такую форму, как сцепленное наследование. Его теоретическую основу представляет теория Томаса Моргана, названная хромосомной. Ученый доказал, что наряду с признаками, передаваемыми потомству независимо, существуют такие виды наследования, как аутосомное и связанное с полом сцепление.

Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения (первый закон Менделя). Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном. Так, при скрещивании растений посевного гороха, сорта которого различались цветом семян (желтые и зеленые), все гибриды первого поколения имели только желтое окрашивание семян. Более того, все эти особи имели также и одинаковый генотип (являлись гетерозиготами).

Еще почитать --->  Доказательство права на наследование по закону

Менделем законы были открыты в то время, когда еще были неизвестны процессы митоза и мейоза, существование хромосом и генов. В наше время возможно цитологическое подтверждение этих законов. Менделевский закон независимого распределения признаков можно объяснить изученными особенностями передвижения хромосом во время мейоза.

  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот, все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.

Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген, в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.

Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.

Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.

Исходя из этого же скрещивания, Мендель вывел еще один закон. Закон чистоты гамет: при образовании гамет в каждую пару попадает только один из двух «элементов наследственности», отвечающих за данный признак. На эту мысль его натолкнуло именно появление одной части зеленых горошин. Мендель сделал выводы о том, что гены из пары не пропадают бесследно, а передаются в следующее поколение.

№ 27. Наследование резус-фактора осуществляется по обычному аутосомно-доминантному типу. Организм с резус-положительным фактором (rh+) несет доминантный ген R, а резус-отрицательный (rh-) – рецессивный ген r. Если муж и жена резус-положительны, то может ли их ребенок быть резус-отрицательным?

№ 15. Альбинизм наследуется у человека как аутосомный рецессивный признак. В семье, где один из супругов альбинос, а другой нормален, родились разнояйцевые близнецы, один из которых нормален, а другой альбинос. Какова вероятность рождения следующего ребенка альбиносом?

№ 10. У человека умение владеть преимущественно правой рукой доминирует над умением владеть преимущественно левой рукой. Мужчина правша, мать которого была левшой, женился на женщине правше, имевшей трех братьев и сестер, двое из которых левши. Определите возможные генотипы женщины и вероятность того, что дети, родившиеся от этого брака, будут левшами.

№ 20. У человека ген карих глаз доминирует над геном голубых глаз, а умение владеть преимущественно правой рукой – над левой. Обе пары генов расположены в разных хромосомах. Дать прогноз потомтва, если оба родителя кареглазые правши, дигетерозиготные по генотипу.

№ 2. Детская форма амавротической семейной идиотии (Тей-Сакса) наследуется как аутосомный рецессивный признак и заканчивается обычно смертельным исходом к 4-5 годам. Первый ребенок умер в семье от анализируемой болезни в то время, когда должен родиться второй. Определите вероятность того, что второй ребенок будет также болен.

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.

Закономерности наследования признаков при моно- ди- и полигибридном скрещивании

Пенетрантность— количественный показатель фенотипического проявления гена (пробиваемость гена в признак). Пенетрантность выражается в процентах числа особей, несущих признак, к общему числу носителей гена, потенциально способного реализоваться в этот признак. При полной пенетрантности (100%) ген проявляет свое действие у каждой особи, обладающей им; при неполной пенетрантности (меньше 100%) ген проявляет свой фенотипический эффект не у всех особей. В основе неполной пенетрантности лежит взаимодействие генетических и средовых причин.

Признаки проявляются под влиянием генотипической среды (сочетание с другими генами в организме) и условий внешней среды. При наличии гена (или генов), детерминирующего признак, степень выраженности его может иногда изменяться в сторону усиления или ослабления. Это называется экспрессивностью.

· от генотипа. Так пенетрантность по шизофрении у гомозигот – 100%, а у гетерозигот – 20 %. Пенетрантность по полидактилии всегда 100%, а экспрессивность может быть различной, количество пальцев на руках и ногах соответственно: 5 и 5 – 6 и 6; 5 и 6 – 5 и 7; 6 и 6 – 6 и 6. При синдроме Марфана (наследственная патология соединительной ткани) эспрессивность гена имеет различные формы: тяжелое течение заболевания (с классическим поражением костной системы, нарушением зрения и сердечно – сосудистой системы), так и стертые формы, протекающие легко (астеническое телосложение, арахнодактилия, сколиоз I степени, близорукость). Таких людей без дополнительного обследования можно отнести к здоровым.

Известно, что фенилкетонурия может иметь различную степень экспрессивности (от степени легкой дебильности до глубокой имбецильности). Ранняя диагностика фенилкетонурии и лечение (искусственная диета) предупреждает развитие клинической картины болезни. В отсутствии диетотерапии и поздней диагностики развивается умственная отсталость, дефект пигментации, судорожный синдром. При своевременной профилактической терапии и социальной помощи больные, ранее не доживавшие до репродуктивного периода, теперь не только живут до 30 – 50 лет и более, но и вступают в брак, имеют детей.

Еще почитать --->  Сколько Будет Налог На Дом С Кадастровой Стоимостью 1200000 2023 Г

Ген — это участок двухцепочечной молекулы ДНК, несущий информацию о структуре одного видоспецифичного белка. Каждый ген определяет последовательность аминокислот в одном из белков, что, в конечном счете, приводит к реализации тех или иных признаков в онтогенезе особи.

Закономерности ди- и полигибридного скрещивания,закон независимого наследования

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

R-плазмида, или R-фактор, представляет собой кольцевую двуспиральную молекулу ДНК. В ней заключены гены, ответственные за механизм репликации и перенос свойств резистентности в клетку- реципиент (фактор переноса устойчивости, или RTF (от англ. resistance transfer factor)), а также гены, определяющие устойчивость к конкретному антибиотику (обозначаются r (от англ. resistance) [ 1] .

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Отклонение от ожидаемого расщепления по законам Менделя вызывают летальные гены. Так при скрещивании двух гетерозигот Аа, вместо ожидаемого расщепления 3:1, можно получить 2:1, если гомозиготы ААпо какой-либо причине – нежизнеспособны. Так у человека наследуется доминантный ген брахидактилии (короткие пальцы). У гетерозигот наблюдается патология, а гомозиготы по этому гену погибают на ранних стадиях эмбриогенеза. Гетерозиготы по гену серповидно-клеточной анемии (Ss) жизнеспособны, а гомозиготы погибают (SS).

На основании изучения гибридов 2-го поколения Менделем был сформулирован второй закон –расщепления: при скрещивании двух гетерозиготных особей (т.е. гибридов), анализируемых по одной альтернативной паре признаков, в потомстве ожидается расщепление по фенотипу в отношении 3:1 (три части с доминантными признаками и одна – с рецессивным) и по генотипу 1:2:1 (одна часть доминантных гомозигот, две части гетерозигот и одна часть рецессивных гомозигот).

Мендель предложил обозначить наследственные задатки (гены) буквами латинского алфавита. Гены, от которых зависит развитие альтернативного признака, принято называть аллеломорфными или аллельными. Аллельные гены расположены в одинаковых локусах гомологичных хромосом. Каждый ген может иметь два состояния – доминантноеи рецессивное. Явление преобладания у потомка первого поколения признака одного из родителей Мендель назвал доминированием. Признак, подавляемый у гибрида, получил название рецессивного. Доминантный ген принято обозначать большой буквой латинского алфавита (А), а рецессивный – малой (а). Организмы, имеющие одинаковые аллели одного гена, например, обе доминантные (АА) или обе рецессивные (аа) называются гомозиготами. Организмы, имеющие разные аллели одного гена – одну доминантную, другую рецессивную (Аа) называют гетерозиготными, или гетерозиготами.

Если же организм имеет только один аллель гена, то тогда говорят, что такой организм гемизиготный. При написании схемы скрещивания принято на первом месте ставить женский организм, на втором месте – мужской. Скрещивание обозначают знаком умножения (х). Родительские особи записываются в первой строчке и обозначаются буквой «Р«. Гаметы, которые образуют родители, записываются во второй строчке и обозначаются буквой «G«, а образующееся потомство – в третьей. Его называют гибридами и обозначают буквой «F» с цифровым индексом, соответствующим порядковому номеру гибридного поколения.

Генетические процессы являются определяющими в онтогенезе всех живых организмов. Индивидуальное развитие любого организма определяется его генотипом. Из поколения в поколение через половые клетки передается информация обо всех многообразных морфологических, физиологических и биохимических признаках, которые реализуются у потомков. Наследование – способ передачи наследственной информации в поколениях при половом размножении или бесполом.

Например, у плодовой мухи дрозофилы длинные крылья доминируют над зачаточными. Особь с длинными крыльями может быть гомозиготной (LL) или гетерозиготной (Ll). Для установления ее генотипа надо провести анализирующее скрещивание между этой мухой и мухой, гомозиготной по рецессивным аллелям. Если у всех потомков от этого скрещивания будут длинные крылья, то особь с неизвестным генотипом гомозиготна по доминантным аллелям (LL), Если же в первом поколении произойдет расщепление на доминантные и рецессивные формы в отношении 1:1, то можно сделать вывод, что исследуемый организм является гетерозиготным.

Моногибридным называется скрещивание, при котором родительские формы отличаются друг от друга по одной паре контрастных, альтернативных признаков. Совокупность всех признаков организма, начиная с внешних и кончая особенностями строения и функционирования клеток, тканей и органов, называется фенотипом. Этот термин может употребляться и по отношению к одному из альтернативных признаков.

Аллелизм. Для установления причины расщепления, причем в строго определенных численных отношениях доминантных и рецессивных признаков, следует вспомнить, что связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные задатки, или факторы, определяющие развитие того или иного признака. Эти факторы позже и были названы генами.

Следовательно, у гибридов первого поколения из пары родительских альтернативных признаков проявляется только один, а признак другого родителя как бы исчезает. Явление преобладания у гибридов F1 признаков одного из родителей Мендель назвал доминированием, а соответствующий признак — доминантным. Признаки, не проявляющиеся у гибридов F1 он назвал рецессивными.

Чтобы выяснить, как ведет себя каждая пара аллелей в потомстве дигетерозиготы, целесообразно провести раздельный учет каждой пары признаков — по форме и окраске семян. Из 556 семян Менделем получено 423 гладких и 133 морщинистых, а также 416 желтых и 140 зеленых. Таким образом, и в этом случае соотношение доминантных и рецессивных форм по каждой паре признаков свидетельствует о моногибридном расщеплении по фенотипу 3:1. Отсюда следует, что дигибридное расщепление представляет собой два независимо идущих моногибридных расщепления, которые как бы накладываются друг на друга.

План лекции по генетике

— частично-поисковый ( Сформулировать цель (основной ожидаемый результат и задачи); проанализировать тему и подобрать задания таким образом, чтобы в них содержалось известное для учеников уровень актуального развития и неизвестное зона ближайшего развития;

1 1) Какие законы моногибридного скрещивания вы знаете? 2)Какие законы дигибридного скрещивания обьясняют наследование признаков цвета глаз у человека? 3) Перечислите основные типы взаимодействия аллельных генов. 4) Каковы типы взаимодействия неаллельных генов . ? 5) В чем состоит значение эпистаза? 6) В чем проявляется полимерия — взаимодействия неаллельных генов ?

Adblock
detector