Закон независимого наследования признаков третий закон менделя

Если вернуться к тому, что каждый признак наследуется независимо, и по каждому наблюдается расщепление 3:1, то можно вычислить вероятность фенотипов по двум признакам разных аллелей, умножая вероятность проявления каждого аллеля (т. е. не обязательно пользоваться решеткой Пеннета). Так, вероятность гладких желтых семян будет равна ¾ × ¾ = 9/16, гладких зеленых – ¾ × ¼ = 3/16, морщинистых желтых – ¼ × ¾ = 3/16, морщинистых зеленых – ¼ × ¼ = 1/16. Таким образом, мы получаем то же соотношение фенотипов: 9:3:3:1.

Например, если организм гетерозиготен по двум исследуемым генам ( AaBb ), то он образует следующие типы гамет: AB , Ab , aB , ab . То есть, например, ген A может оказаться в одной гамете как с геном B , так и b . Это же касается и других генов (их произвольного сочетания с неаллельными генами).

Например, если бы гены, отвечающие за окраску и форму семян гороха находились в одной хромосоме, то гибриды первого поколения могли бы образовывать гаметы только двух типов ( AB и ab ), так как в процессе мейоза независимо друг от друга расходятся родительские хромосомы, но не отдельные гены. В таком случае во втором поколении было бы расщепление 3:1 (три желтых гладких на одно зеленое морщинистое).

Третий закон Менделя проявляется уже при дигибридном скрещивании (тем более при тригибридном и полигибридном), когда чистые линии различаются по двум исследуемым признакам. Мендель скрестил сорт гороха с желтыми гладкими семена с сортом, у которого были зеленые морщинистые семена, и получил исключительно желтые гладкие семена F1.

Далее он вырастил из семян растения F1, позволил им самоопыляться и получил семена F2. И здесь он наблюдал расщепление: появились растения как с зелеными, так и морщинистыми семенами. Самое удивительное было то, что среди гибридов второго поколения оказались не только растения с желтыми гладкими и зелеными морщинистыми семенами. Также были желтые морщинистые и зеленые гладкие семена, т. е. произошла рекомбинация признаков, и получились такие комбинации, которые не встречались у исходных родительских форм.

Законы Менделя

Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга — проявляется промежуточный признак.

Закон независимого наследования признаков третий закон менделя

Дигибридное скрещивание. Закон независимого наследования признаков. Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков, называется дигибридным. Если родители отличаются по многим парам альтернативных признаков, скрещивание называется полигибридным.

Проанализируем наследование каждой пары альтернативных признаков в отдельности и получим следующие результаты: 12 частей семян имели желтую окраску, а 4 части — зеленую, т. е. расщепление по признаку окраски, как и при моногибрид-ном скрещивании, составляет 3:1. Такая же картина наблюдается и при анализе расщепления по форме поверхности семян: 12 гладких и 4 морщинистых, т. е. 3 : 1.

Свободное сочетание таких гамет при оплодотворении приводит к образованию разных вариантов зигот, а значит, и потомков. Используя фенотипические радикалы, расщепление по фенотипу при дигибридном скрещивании (и при уело-вии, что аллельные гены каждой пары взаимодействуют между собой по типу полного доминирования) можно записать следующим образом:

Гамета — (от греч. «гаметес» — супруг) — половая клетка растительного или животного организма, несущая один ген из аллельной пары. Гаметы всегда несут гены в «чистом» виде, так как образуются путем мейотического деления клеток и содержат одну из пары гомологичных хромосом.

В опытах Г Мендель скрещивал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков, например по окраске и форме поверхности семян Одни родительские растения имели желтые гладкие семена, другие — зеленые морщинистые. В первом поколении наблюдалось единообразие — все гибриды имели желтые гладкие семена. Значит, желтая окраска полностью доминирует над зеленой, а гладкая поверхность — над морщинистой.

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Еще почитать --->  Закон о праве наследования по вкладу

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления попадают в разные клетки. При слиянии мужских и женских гамет получается зигота с диплоидным набором хромосом. При этом половину хромосом зигота получает от отцовского организма, половину — от материнского. По данной паре хромосом (и данной паре аллелей) образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % — гетерозиготными, 25 % — гомозиготными рецессивными, то есть устанавливается отношение 1АА:2Аа:1аа (расщепление по генотипу 1:2:1). Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3/4 особей с доминантным признаком, 1/4 особей с рецессивным). Таким образом, при моногибридном скрещивании цитологическая основа расщепления признаков — расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Между 1856-1863 годами Мендель проводил эксперименты по гибридизации огородного гороха. В течение этого периода он выбрал некоторые отличительные черты гороха и провел перекрестное / искусственное опыление на линиях гороха, которые показали стабильную наследственность и подверглись непрерывному самоопылению. Такие линии гороха называются чистопородными линиями гороха.

  • Горох легко выращивать и ухаживать за ним.
  • Он естественно самоопыляется, но может также подвергаться перекрестному опылению.
  • Это однолетнее растение, поэтому за короткий промежуток времени можно изучить многие поколения.
  • В нем есть несколько контрастных видов.

Не возвращаясь к расхождениям в интерпретации экспериментов Менделя между их автором и современными генетиками, можно вкратце напомнить, что путем скрещивания
гладкого горошка и морщинистого горошка Мендель получил гладкий гибридный горошек (который в точности соответствовал принципу однородности гибридов первого поколения), а также путем скрещивания между семенами этого горошка он получил 3/4 гладкого гороха и 1/4 морщинистого горошка (рисунок 1).

Законы Менделя основаны на экспериментальных результатах гибридизации растений. Первый ботаник-гибридизатор был в 17 веке, Карл фон Линне, которому мы обязаны систематикой видов растений. Многочисленные ботаники в конце 18 — первой половине 19 века провели гибридизацию с двумя целями: либо показать, что только вид стабилен, гибриды нестабильны не могут долго сохраняться, либо с целью улучшения культурных растений. Первые были учеными-креационистами и фиксистами, вторые — агрономы. Они считали, что они сделали гибриды между разными сортами одного вида, а не межвидовые гибриды. Во всяком случае, мы задолго до работ Менделя знали принцип единообразия гибридов первого поколения, который часто ошибочно считают первым из законов Менделя.

Его также называют первым наследственным законом Менделя. По закону доминирования гибридные потомки наследуют только доминантный признак фенотипа. Подавленные аллели называются рецессивными, в то время как аллели, определяющие признак, называются доминантными.

Анализируя полученное потомство, Мендель обратил внимание на то, что, наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена). Расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 – зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске и форме семян (желтые гладкие и зеленые морщинистые). Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. Следовательно, желтая окраска (А) и гладкая форма (В) семян – доминантные признаки, зеленая окраска (а) и морщинистая форма (в) – рецессивные признаки.

Еще почитать --->  Прекращение права на наследство

Проведенное исследование позволило сформулировать закон независимого расщепления признаков (третий закон Менделя): при скрещивании двух гетерозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга в соотношении 3:1 и комбинируются во всех возможных сочетаниях.

При скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 1:2:1:2:4:2:1:2:1, признаки наследуются независимо друг отдруга и комбинируются во всех возможных сочетаниях. Четыре фенотипа в F2 скрывают девять разных генотипов.

Химия, Биология, подготовка к ГИА и ЕГЭ

При составлении такой решетки Пеннета (5×5) и определении признаков надо быть внимательным — при подсчете легко ошибиться, но на экзамене не стоит тратить на это время. Третий закон дает простую формулу: наличие двух признаков и гетерозиготных особей — дает 16 потомков с расщеплением по фенотипу 9 : 3 : 3 : 1.

Если полученные Г. Менделем результаты рассмотреть отдельно по каждому признаку (цвету и форме), то по каждому из них будет сохраняться соотношение 3:1, характерное для моногибридного скрещивания. Отсюда Г. Мендель заключил, что при дигибридном скрещивании гены и признаки, за которые эти гены отвечают, сочетаются и наследуются независимо друг от друга. Этот вывод получил название закона независимого наследования признаков — третий закон Менделя.

Лолита, скажите пожалуйста, а можно ли записывать расщепления по фенотипу и генотипу отдельно для каждого признака? Например, нас в школе учили такой записи ответа:
по цвету шерсти: по ф/т: 3:1 (12 черн., 4 светл.); по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.);
по длине шерсти: по ф/т: 3:1 (12 длин., 4 кор.); по г/т: 1:2:1 (4 гомозиг. по домин., 8 гетерозиг., 4 гомозиг. по рецес.).
Просто если, допустим, признаков не два а больше, то сваливать их все в одну кучу будет ОЧЕНЬ не удобно, и легко запутаться. К тому же при разделении на признаки нагляднее просматривается независимое наследование. Но можно ли так делать?
А вообще, придираются ли эксперты ЕГЭ к оформлению задачи? Наша учительница по биологии всегда очень жестко этого требовала и снижала оценки если, например, не напишешь в условии «Дано (ген-признак):» или не распишешь типы гамет.

Как вы решаете — это экзаменаторам не очень важно. Важно, что вы пишите после слова «ОТВЕТ»…
От того, распишите ли вы правильно гаметы, зависит решение задачи, все остальное — необязательно.
Важно, чтобы вы давали ответ именно на поставленный вопрос, а не расписывали все, что знаете по теме «генетика» 🙂

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

МЕ́НДЕЛЯ ЗАКО́НЫ, ос­нов­ные за­ко­но­мер­но­сти рас­пре­де­ле­ния на­след­ст­вен­но де­тер­ми­ни­ро­ван­ных при­зна­ков в ря­ду по­сле­до­ва­тель­ных по­ко­ле­ний, ус­та­нов­лен­ные Г. Мен­де­лем . Экс­пе­рим. ос­но­вой для фор­му­ли­ров­ки М. з. по­слу­жи­ли мно­го­лет­ние (1856–63) опы­ты по скре­щи­ва­нию не­сколь­ких сор­тов го­ро­ха по­сев­но­го (са­мо­опы­ляю­ще­го­ся рас­те­ния) с це­лью ус­та­нов­ле­ния, как пи­сал сам ав­тор, «все­об­ще­го за­ко­на об­ра­зо­ва­ния и раз­ви­тия гиб­ри­дов». Важ­ную роль в раз­ра­бот­ке изу­чае­мой Менделем про­бле­мы сыг­ра­ли: вы­бор объ­ек­та, пре­иму­ще­ст­во ко­то­ро­го для по­доб­ных опы­тов за­клю­ча­лось в мно­го­чис­лен­но­сти сор­тов (раз­но­вид­но­стей) го­ро­ха, по­сто­ян­ст­ве их от­ли­чит. при­зна­ков, пред­став­лен­ных ка­че­ст­вен­ны­ми (аль­тер­на­тив­ны­ми) фор­ма­ми, и од­но­го­дич­но­сти жиз­нен­но­го цик­ла; ис­поль­зо­ва­ние стро­гих ме­то­дов под­бо­ра ис­ход­но­го ма­те­риа­ла, спец. схем скре­щи­ва­ний; при­ме­не­ние ко­ли­че­ст­вен­но­го учё­та и ма­те­ма­тич. ана­ли­за по­лу­чен­ных ре­зуль­та­тов. М. з. вклю­ча­ют за­кон еди­но­об­ра­зия гиб­ри­дов пер­во­го по­ко­ле­ния, за­кон рас­ще­п­ле­ния и за­кон не­за­ви­си­мо­го ком­би­ни­ро­ва­ния при­зна­ков.

Еще почитать --->  Требование К Выполнению Ситуационного Плана

Закон независимого наследования признаков это какой 2023 год

Анализ по фенотипу показывает, что по форме семян на 12 частей круглых наблюдается 4 части морщинистых (3:1), по ок­раске на 12 частей желтых —4 зеленых (3:1). Следовательно, во втором поколении дигибридного скрещивания наследование по одной паре признаков (форме семян) идет независимо от насле­дования по другой паре (окраске семян).

Таким образом, каждая пара признаков при наследовании ведет себя независимо от другой пары, и только в результате их свободного комбинирования наблюдается характерное для ди-гибридного расщепления соотношение фенотипов в F2 — 9:3:3:1, которое можно рассматривать как результат сочетания двух мо­ногибридных расщеплений (3:1 и 3:1).

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами. Объяснение Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними). Основные положения теории наследственности Менделя В современной интерпретации эти положения следующие: За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном) Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери. Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля). Условия выполнения законов Менделя В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования. Условия выполнения закона расщепления при моногибридном скрещивании Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

Установив закономерности наследования признаков при моно­гибридном скрещивании, Мендель приступил к проведению ди-гибридного скрещивания. Он отобрал два сорта гороха, которые отличались по двум парам альтернативных признаков. Одна из них определяла форму семян: круглая (АА) или морщинистая (аа), другая — окраску: желтая (ВВ) или зеленая (bb). При опылении растений с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (aabb) все семена гибридов первого поколения оказались круглыми и желтыми (АаВЬ):

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Ab, аВ и ab) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и ab) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Закон независимого наследования признаков третий закон менделя

Такое скрещивание было выбрано первым для опытов. Моногибридное скрещивание – скрещивание особей, отличающихся друг от друга лишь одним признаком. Ген, в котором заключена информация об этом одном из признаков называется аллельным геном или аллелью.

Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.

Затем пишется потомство. Если это первое поколение, то «F1», если дальше, то цифра соответствует очередности. Здесь должны быть все версии потомков. Так как при скрещивании монозигот у нас были только гаметы А и а, то вариант всего один: Аа. Это гетерозигота. Так как по условию желтый цвет доминирует над зеленым, то горошины будут желтыми.

  1. родители имеют группы крови: II группа — IAi0 (гаметы IA, i0), III группа — IВIВ (гаметы IВ);
  2. возможные фенотипы и генотипы групп крови детей: IV группа (IAIB) и III группа (IBi0);
  3. вероятность наследования II группы крови — 0%.

Ответ: см. решение

Вернемся к Грегору Менделю и гороху. Как говорилось ранее, он использовал в своих опытах горох, но не любой, а только чистые линии – группы организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В качестве такого признака был выбран цвет горошин: одна линия была только зеленая во всех поколениях, а друга – желтая.

Adblock
detector