Закон независимого наследования признаков биология

Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака — микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

    Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися признаками: желтый — зеленый цвет семян, гладкая — морщинистая форма семян

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Закон независимого наследования признаков биология

Исходя из этого же скрещивания, Мендель вывел еще один закон. Закон чистоты гамет: при образовании гамет в каждую пару попадает только один из двух «элементов наследственности», отвечающих за данный признак. На эту мысль его натолкнуло именно появление одной части зеленых горошин. Мендель сделал выводы о том, что гены из пары не пропадают бесследно, а передаются в следующее поколение.

  1. родители имеют группы крови: II группа — IAi0 (гаметы IA, i0), III группа — IВIВ (гаметы IВ);
  2. возможные фенотипы и генотипы групп крови детей: IV группа (IAIB) и III группа (IBi0);
  3. вероятность наследования II группы крови — 0%.

Ответ: см. решение

Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении Х а Y (так как у него признак проявился), то у женщины генотип –Х А Х А

Затем пишется потомство. Если это первое поколение, то «F1», если дальше, то цифра соответствует очередности. Здесь должны быть все версии потомков. Так как при скрещивании монозигот у нас были только гаметы А и а, то вариант всего один: Аа. Это гетерозигота. Так как по условию желтый цвет доминирует над зеленым, то горошины будут желтыми.

  1. Анна Х d X D , Павел X D Y
  2. Первая дочь Анны и Павла Х d X D ,
  3. Вторая дочь Анны и Павла Х D X D , т. к. пять сыновей имеют нормальное
  4. зрение.
  5. Первый сын XdY , его дочери Х d X D , а его сыновья X D Y.
  6. Второй сын Анны и Павла и его дети имеют генотипы Х D У.

Ответ: см. решение

Сцепленное наследование

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

У людей мужчина получает Х -хромосому от матери, Y -хромосому — от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома — средняя субметацентрическая, Y -хромосома — мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание — два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец — рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец — доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F1, то во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F2 половина самок и самцов — красноглазые, половина — белоглазые.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Еще почитать --->  Статья 228 5 Уголовного Кодекса

Очень важно понять, что хромосомы каждой пары осуществляют этот процесс независимо от других пар. В результате хромосомы, полученные от отца и матери, перераспределяются по гаметам случайно. При этом в гаметах образуются новые сочетания хромосом, отличные от тех, что существовали в родительских гаметах. Происходит рекомбинация признаков — процесс, приводящий к возникновению новых сочетаний проявлений признаков и увеличению генетического разнообразия.

Упражнение 5. Длинношерстного чёрного самца морской свинки скрестили с чёрной короткошерстной самкой. Получено 15 свинок с короткой чёрной шерстью, 13 — с длинной чёрной, 4 — с короткой белой, 5 — с длинной белой. Определите генотипы родителей, если черная и длинная шерсть являются доминирующими проявлениями признаков.

При скрещивании или самоопылении гибридов (F1) уже будут образовываться по четыре типа гамет (G) — АВ, АЪ, аВ и аЪ. Поэтому среди гибридов второго поколения (F2) возможны 16 комбинаций гамет, образующихся путём независимого расхождения гомологичных хромосом во время мейоза (ил. 91).

Чтобы объяснить эти результаты, Г. Мендель проследил наследование различных проявлений каждого признака отдельно. Соотношение семян разного цвета гибридов второго поколения было таким: 12 частей семян имели жёлтый цвет, а 4 — зелёный, то есть расщепление по признаку цвета, как и в случае моногибридного скрещивания, составляло 3 : 1 Подобное наблюдали и при расщеплении по признаку структуры поверхности семян: 12 частей семян имели гладкую поверхность, а 4 — морщинистую. То есть расщепление по признаку структуры поверхности семян также было 3 : 1.

Для решения упражнений в алгебре достаточно часто используют формулы сокращённого умножения. Многие из них являются частными случаями бинома Ньютона. Что такое бином Ньютона? Чему равен квадрат суммы двух выражений и как его применяют при наследовании признаков?

Дальнейшее развитие биологии уточнило выводы Грегора Менделя. Так для некоторых типов генов возможно неполное доминирование. В этом случае подавление происходит только частично, что приводит к смешиванию признаков. Например, при скрещивании цветков ночной красавицы с красными (АА) и белыми (аа) лепестками, потомство будет иметь розовый (Аа) цвет.

  • Закон единообразия гибридов первого поколения — неизменность (несмешиваемость) признаков при первоначальном смешивании.
  • Закон расщепления — рецессивный ген проявляется в следующих поколениях в определенном соотношении.
  • Закон чистоты гамет — при формировании репродуктивных клеток используется только по одному аллелю из генов родителей.
  • Закон наследования признаков — если особи отличаются по двум и более параметрам, то при скрещивании эти качества передаются и комбинируются независимо друг от друга.

База современной генетики была заложена в XIX веке исследованиями нескольких европейских ученых. Результаты этих работ были обобщены Георгом Менделем, который на их основании сформулировал несколько гипотез. Дальнейшее развитие науки подтвердило его правоту.

Исследователями были выявлены принципы доминантности, сходства потомков в первом поколении, расщепление и комбинаторику признаков при повторном смешивании. При этом не был открыт всеобщий закон, регулирующий образование гибридов и численное выражение получаемых результатов — в этом заключается главная заслуга Георга Менделя.

В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

Тема 2

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Дигибридное скрещивание

Результат показал, что закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и при дигибридном скрещивании. Теперь мы знаем, что это соблюдается при условиях, что родительские формы гомозиготны, при полном доминировании и когда неаллельные гены лежат в негомологичных хромосомах.

  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

Для наглядности скрещивание можно записывать так, чтобы было видно, что аллельные гены лежат в разных хромосомах

Чтобы рассмотреть все варианты возможного потомства, удобно построить решетку Пеннета. Это квадрат 4х4 с 16 возможными результатами. Из неё мы видим, что есть 9 растений с круглыми желтыми, 3 с морщинистыми желтыми, 3 с круглыми зелеными и 1 с морщинистыми зелеными семенами. Это демонстрирует фенотипическое соотношение 9:3:3:1, характерное для признаков, которые ведут себя независимо.

При синдроме «голубых склер» у человека наблюдаются голубая окраска склер, ломкость костей и пороки развития сердца. При плейотропии, вероятно, наблюдается недостаточность ферментов, активных в нескольких типах тканей или в одной, но широко распространенной. В основе синдрома Марфана, по-видимому, лежит один и тот же дефект развития соединительной ткани.

В эксперименте с дигибридным скрещиванием Мендель рассмотрел два признака, каждый из которых имеет два аллеля. Он скрестил морщинистые зеленые семена и округло-желтые семена и заметил, что все потомство первого поколения (потомство F1) было округло-желтым. Это означало, что доминирующими чертами были круглая форма и желтый цвет.

Еще почитать --->  Информация по нормативам потребления коммунальной услуги по отоплению с 1 января 2023 года

Также известный как второй закон наследования Менделя, закон независимого распределения утверждает, что пара признаков отделяется независимо от другой пары во время формирования гамет. Поскольку индивидуальные факторы наследственности сортируются независимо друг от друга, разные черты имеют равные возможности встречаться вместе.

Закон расщепления гласит, что во время производства гамет две копии каждого наследственного фактора разделяются, так что потомство получает по одному фактору от каждого родителя. Другими словами, пары аллелей (альтернативная форма гена) разделяются во время формирования гамет и повторно объединяются случайным образом во время оплодотворения. Этот закон также известен как третий закон Менделя о наследовании.

Мендель даже провел этот эксперимент с другими контрастирующими признаками, такими как зеленый горошек против желтого горошка, круглый или морщинистый и т. д. Во всех случаях он обнаружил, что результаты были одинаковыми. Исходя из этого, он сформулировал законы сегрегации и доминирования.

Таким образом, в течение первой половины этого столетия развивалась наука «генетическая патология», но без изоляции, то есть развитие ее было внутри раздела «медицинской генетики» — лечебная патология. Гемофилия была исследована превыше всего, а также другие болезни крови, миопатия, болезнь мышечной системы и т. д.

Свободное сочетание таких гамет при оплодотворении приводит к образованию разных вариантов зигот, а значит, и потомков. Используя фенотипические радикалы, расщепление по фенотипу при дигибридном скрещивании (и при уело-вии, что аллельные гены каждой пары взаимодействуют между собой по типу полного доминирования) можно записать следующим образом:

Это говорит о том, что при дигибридиом (а также полигибридном) скрещивании расщепление по каждой паре альтернативных признаков происходит н е -зависимо от других. Значит, дигибридное скрещивание, по сути, представляет собой два независимо идущих моногибридных скрещивания. Эта закономерность, установленная Г. Менделем, впоследствии была названа законом независимого наследования признаков или третьим законом Менделя. Его можно сформулировать следующим образом: при скрещивании особей, отличающихся по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо и комбинируются во всех возможных сочетаниях.

Проанализируем наследование каждой пары альтернативных признаков в отдельности и получим следующие результаты: 12 частей семян имели желтую окраску, а 4 части — зеленую, т. е. расщепление по признаку окраски, как и при моногибрид-ном скрещивании, составляет 3:1. Такая же картина наблюдается и при анализе расщепления по форме поверхности семян: 12 гладких и 4 морщинистых, т. е. 3 : 1.

Гены, контролирующие развитие разных пар признаков, называются неаллельными. Они располагаются в разных парах хромосом или в разных участках гомологичных хромосом. В данном случае гены, обусловливающие окраску (Л и а), неаллельны по отношению к генам, определяющим поверхность семян и Ь). Предположим, что эти пары аллелей находятся в негомологичных хромосомах, т. е. в разных парах хромосом.

Как известно, в анафазе I мейоза гомологичные хромосомы расходятся к разным полюсам клетки. При этом расхождение каждой пары хромосом происходит независимо от других пар. Негомологичные хромосомы расходятся к полюсам случайным образом, образуя различные комбинации. Значит, ген Л может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. По этой причине дигетерозиготные особи образуют четыре типа гамет АВ, Ab, аВ, ab в равном соотношении — по 25 %.

Дальнейшие исследования ученый проводил самоопылением гибридов F1. Было установлено, что в F2 появляются особи как с доминантными признаками (красные цветы, желтые семена), так и с рецессивными (белые цветы, зеленые семена) в соотношении 3:1. Это явление называется законом расщепления гибридов второго поколения или вторым законом Менделя.

Самоопыление гибридов F1 дало в F2 особей с четырьмя фенотипами. Два из них совпадали с родительским, а у двух других появились особенности, сочетающие материнские и отцовские черты. Например, при изучении наследования окраски и гладкости семян получились растения четырех фенотипов: желтые гладкие, желтые морщинистые, зеленые гладкие, зеленые морщинистые в соотношении 9:3:3:1.

  • Родительский организм обозначается латинской буквой P.
  • Женский пол — значком ♀ или буквой E.
  • Мужской пол — значком ♂ или буквой G.
  • Скрещивание — знаком умножения.
  • Гибридное потомство — латинской буквой F и отмечается цифровым индексом, означающим порядок поколения (F1, F2 и т. д. ).
  • Заглавной буквой записывается доминантный (A, B), строчной — рецессивный ген (a, b).
  • Двумя заглавными — гомозигота по доминантному (AA, BB), двумя строчными — гомозигота по рецессивному признаку (aa, bb).
  • Заглавной и строчной буквами (Аа, Bb) обозначается гетерозигота.

Гетерозиготные организмы имеют в гомологичных хромосомах аллели, кодирующие разные состояния признака (и доминантные, и рецессивные). Они образуют гаметы двух сортов, а при их скрещивании происходит расщепление примет. Доминантный аллель гена позволяет развиться признаку и в гомо-, и в гетерозиготном состоянии, рецессивный — только в гомозиготном.

При самоопылении происходит равновероятное сочетание гамет во время оплодотворения. В F2 может появиться как нерасщепляющееся гомозиготное потомство с одинаковыми аллельными генами (АА или аа) в гомологичных хромосомах, так и гетерозиготные особи с расщеплением и разными аллелями (Аа), образующими два вида гамет.

Родители были доминантной и рецессивной гомозиготами. В первом поколении горошины желтые и гладкие, гетерозиготы. Так как при скрещивании двух гетерозигот по обоим признакам от каждого родителя по 4 варианта гамет, то удобно воспользоваться решеткой Пеннета. Для этого гаметы одного родителя записывают по горизонтали, а второго – по вертикали. Затем на пересечениях заполняются ячейки решетки.

В зависимости от комбинации генов в паре, организм может быть гомозиготным или гетерозиготным. В первом случае оба гена несут одну разновидность признака, во втором – две разные. Гомозиготами будут являться горох, оба аллели которого несут окраску только желтого или только зеленого цвета. Гетерозиготами – те, у которых один ген несет желтый цвет, а другой – зеленый.

Теперь разберемся с генотипом людей первого поколения. Мы уже установили, что признак рецессивный. Для проявления такого признака в следующем поколении женщин необходимо, чтобы у женщины в первом поколении была рецессивная хромосома. У нас во втором поколении нет людей, с проявляющимся признаком. Следовательно, так как генотип мужчины в первом поколении Х а Y (так как у него признак проявился), то у женщины генотип –Х А Х А

Если скрестить пурпурные и белые цветы ночной красавицы, то гетерозиготное потомство приобретет отличный от родителей цвет: розовый. По закону неполного доминирования при скрещивании доминантной и рецессивной гомозигот, все особи в потомстве проявят либо признаки родителей, либо промежуточный признак.

  1. Анна Х d X D , Павел X D Y
  2. Первая дочь Анны и Павла Х d X D ,
  3. Вторая дочь Анны и Павла Х D X D , т. к. пять сыновей имеют нормальное
  4. зрение.
  5. Первый сын XdY , его дочери Х d X D , а его сыновья X D Y.
  6. Второй сын Анны и Павла и его дети имеют генотипы Х D У.

Ответ: см. решение

При моногибридном скрещивании в случае полного доминирования у гетерозиготных гибридов первого поколения проявляется только доминантный аллель, однако рецессивный аллель не теряется и не смешивается с доминантным. Среди гибридов второго поколения и рецессивный, и доминантный аллель может проявиться в своем – чистом – виде, т. е. в гомозиготном состоянии. В итоге гаметы, образуемые такой гетерозиготой, являются чистыми, т. е. гамета А не содержит ничего от аллели а, гамета а – чиста от А.

Еще почитать --->  Могут пристовы забрать автомобиль если живеш в деревне

Количественные признаки представлены в популяции множеством альтернативных вариантов. К количественным относятся такие признаки, как рост, пигментация кожи, умственные способности у человека, яйценоскость у кур, содержание сахара в корнеплодах сахарной свеклы и т. д. Наследование полигенных признаков в целом не подчиняется законам Менделя.

Отмечается в случаях, когда фенотип гетерозигот СС1 отличается от фенотипа гомозигот СС и С1С1 промежуточной степенью проявления признака, т. е. аллель, отвечающий за формирование нормального признака, находясь в двойной дозе у гомозиготы СС, проявляется сильнее, чем в одинарной дозе у гетерозиготы СС1. Возможные при этом генотипы различаются экспрессивностью, т. е. степенью выраженности признака.

При взаимодействии аллельных генов возможны разные варианты проявления признака. Если аллели находятся в гомозиготном состоянии, то развивается соответствующий аллелю вариант признака. В случае гетерозиготности развитие признака будет зависеть от конкретного вида взаимодействия аллельных генов.

Закон о независимом наследовании: расщепление по каждой паре признаков идет независимо от других пар признаков. В чистом виде этот закон справедлив только для генов, локализованных в разных хромосомах, и частично соблюдается для генов, расположенных в одной хромосоме, но на значительном расстоянии друг от друга.

Дигибридное скрещивание

Оказалось, что аллели двух генов ведут себя независимо друг от друга и не влияют на неаллельные признаки. Круглые и морщинистые семена встречаются в соотношении примерно 3:1 (423: 133), так же как и жёлтые и зелёные (416:140). Аналогичные результаты Мендель получил и для других пар признаков. Значит, дигибридное скрещивание – это два независимо протекающих моногибридных скрещивания.

Результат показал, что закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и при дигибридном скрещивании. Теперь мы знаем, что это соблюдается при условиях, что родительские формы гомозиготны, при полном доминировании и когда неаллельные гены лежат в негомологичных хромосомах.

Рассмотрим скрещивание, включающее различные аллели формы семян (круглые R и морщинистые r) и аллельные признаки цвета семян (желтый Y, зеленый y). Скрещивая чистые линии растений (дигомозиготы) с круглыми жёлтыми семенами (RRYY) и с морщинистыми зелеными (rryy), Мендель получил единообразное гетерозиготное потомство F1 с одним и тем же фенотипом (круглые и жёлтые семена) и генотипом (RrYy – дигетерозигота).

  • это прямая задача, так как из описания известны генотипы родителей, а узнать нужно генотипы и фенотипы потомков. Доминирование полное, признака 2, значит скрещивание дигибридное.
  • вводим буквенные обозначения доминантного и рецессивного признаков: глухонемота – а, норма по данному признаку – А, подагра доминантный признак – В, её отсутствие – в.
  • определяем генотипы родителей. Мать глухонемая, значит её набор аллелей однозначен – аа, она не страдает подагрой, у неё отсутствует доминантный аллель по этому признаку – вв. Генотип матери аавв. Отец может иметь несколько вариантов генотопов. Он не глухонемой, но может быть носителем, тогда либо Аа, либо АА. Он болен подагрой, но его второй аллеьный ген может быть нормальным: либо Вв, либо ВВ. Нужно рассмотреть несколько вариантов решения задачи с разными возможными генотипами отца: АаВв, АаВВ, ААВв и ААВВ. Жаль, что в задаче не сказано, что родители дигомозиготы.
  • составляем схемы скрещивания и определяем генотипы и фенотипы потомков.
  • гены разных аллельных пар (неаллельные) должны находиться в разных парах (негомологичных) хромосом;
  • между генами не должно быть сцепления и взаимодействия, кроме полного доминирования;
  • должна быть равная вероятность образования гамет и зигот разного типа и равная вероятность выживания организмов с разными генотипами (не должно быть летальных генов).

МЕ́НДЕЛЯ ЗАКО́НЫ

МЕ́НДЕЛЯ ЗАКО́НЫ, ос­нов­ные за­ко­но­мер­но­сти рас­пре­де­ле­ния на­след­ст­вен­но де­тер­ми­ни­ро­ван­ных при­зна­ков в ря­ду по­сле­до­ва­тель­ных по­ко­ле­ний, ус­та­нов­лен­ные Г. Мен­де­лем . Экс­пе­рим. ос­но­вой для фор­му­ли­ров­ки М. з. по­слу­жи­ли мно­го­лет­ние (1856–63) опы­ты по скре­щи­ва­нию не­сколь­ких сор­тов го­ро­ха по­сев­но­го (са­мо­опы­ляю­ще­го­ся рас­те­ния) с це­лью ус­та­нов­ле­ния, как пи­сал сам ав­тор, «все­об­ще­го за­ко­на об­ра­зо­ва­ния и раз­ви­тия гиб­ри­дов». Важ­ную роль в раз­ра­бот­ке изу­чае­мой Менделем про­бле­мы сыг­ра­ли: вы­бор объ­ек­та, пре­иму­ще­ст­во ко­то­ро­го для по­доб­ных опы­тов за­клю­ча­лось в мно­го­чис­лен­но­сти сор­тов (раз­но­вид­но­стей) го­ро­ха, по­сто­ян­ст­ве их от­ли­чит. при­зна­ков, пред­став­лен­ных ка­че­ст­вен­ны­ми (аль­тер­на­тив­ны­ми) фор­ма­ми, и од­но­го­дич­но­сти жиз­нен­но­го цик­ла; ис­поль­зо­ва­ние стро­гих ме­то­дов под­бо­ра ис­ход­но­го ма­те­риа­ла, спец. схем скре­щи­ва­ний; при­ме­не­ние ко­ли­че­ст­вен­но­го учё­та и ма­те­ма­тич. ана­ли­за по­лу­чен­ных ре­зуль­та­тов. М. з. вклю­ча­ют за­кон еди­но­об­ра­зия гиб­ри­дов пер­во­го по­ко­ле­ния, за­кон рас­ще­п­ле­ния и за­кон не­за­ви­си­мо­го ком­би­ни­ро­ва­ния при­зна­ков.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

  • гомозиготность производных форм;
  • образование у гибридов гамет всех возможных типов в соответствующих соотношениях, что обеспечивается правильным течением мейоза;
  • одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении;
  • одинаковая жизнеспособность всех типов зигот.
  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой — от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам, и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Обратите внимание, что все законы Менделя справедливы лишь в случае полного доминирования. Когда доминирование будет неполным, то гетерозиготная форма будет промежуточным видом и потребности в рассматриваемом скрещивании не будет. Еще одним ограничением является случай, когда какие-то признаки наследуются вместе. В этом случае будет нарушаться закон независимого наследования. Существует группа признаков, которая кодируется большим количеством генов. Это так называемая полигенная наследственность. Понятно, что в этом случае будет нарушаться закон чистоты гамет.

Adblock
detector